Reactive processing of formaldehyde and acetaldehyde

نویسندگان

  • Z. Li
  • V. F. McNeill
چکیده

Atmospheric Chemistry and Physics Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore , cVOC uptake can lead to organic film formation at the gas-aerosol interface and 5 changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sul-fate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiac-10 etal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2) dyn cm −1 in pure water and 62(±1) dyn cm −1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of 15 these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives.

HeLa cells were exposed to formaldehyde and its metabolic derivatives, methanol, formic acid, and acetaldehyde, to investigate that the toxicity of formaldehyde is not caused by the chemical group. After 1 h of treatment with formaldehyde, mitochondrial assays showed that low concentrations (e.g. 10 μmol/L) of formaldehyde promoted growth of the HeLa cells, while higher concentrations (e.g. ≥62...

متن کامل

A 2-aza-Cope reactivity-based platform for ratiometric fluorescence imaging of formaldehyde in living cells.

Formaldehyde (FA) is a major reactive carbonyl species (RCS) that is naturally produced in living systems through a diverse array of cellular pathways that span from epigenetic regulation to the metabolic processing of endogenous metabolites. At the same time, however, aberrant elevations in FA levels contribute to pathologies ranging from cancer and diabetes to heart, liver, and neurodegenerat...

متن کامل

The Role of Aldehydes as Degenerate Branching Intermediate in the Oxidation of Hydrocarbons

The thermal oxidation of propane in the temperature range 350-425oC was studied in order to elucidate the role of higher aldehydes as degenerate branching intermediates in the oxidation of hydrocarbons. In the slow combustion of propane, the high yield of propylene and methanol as the primary products, the formation of hydrogen peroxide, carbon monoxide, carbon dioxide, formaldehyde and steam a...

متن کامل

Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an im...

متن کامل

Source Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries

In the Persian Gulf region, conditions are highly favorable for ozone air pollution and the region is a hot spot of photochemical smog. The vast activities in processing oil and gas play a major role in it. It was found that the elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from Hydrocarbon Processing facilities lead to substantial ozone production. South Pars...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011